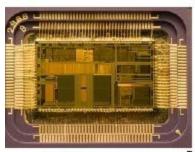
MEMORI

Mata Kuliah Arsitektur Komputer Program Studi Sistem Informasi 2013/2014 STMIK Dumai

-- Materi 04 --

Acknowledgement

- Main Material:
 - Stallings, William. "Computer Organization and Architecture 6th Edition".
- Supplement:
 - Rizky N, Andes. "Memori". 2012.


Tujuan Materi 04

- Menjelaskan tentang memori utama komputer
- Menjelaskan tipe dari memori, waktu dan pengontrolan
- Menjelaskan karakteristik sistem memori
- Menjelaskan jenis memori semikonduktor

Memori?

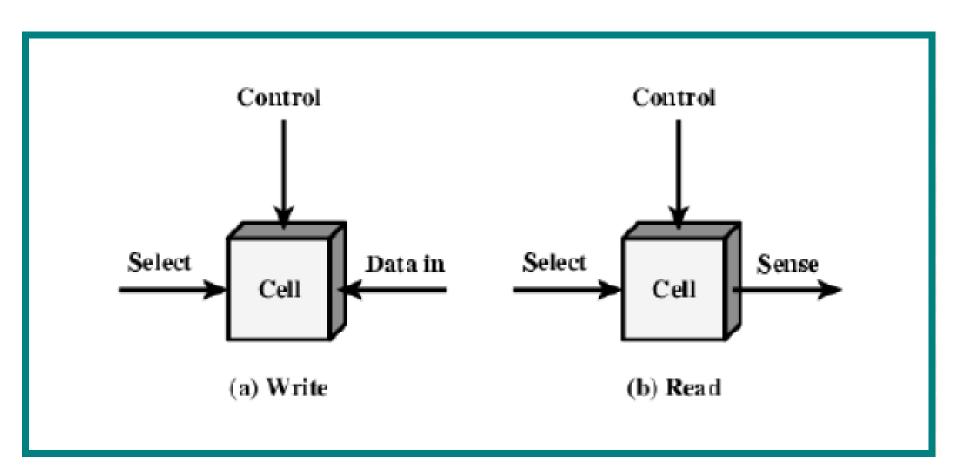
- Memori adalah bagian dari komputer tempat program-program dan data-data disimpan.
- Istilah store atau storage juga digunakan untuk memori.
- Tempat informasi, dapat dibaca dan ditulis.
- Memiliki beragam jenis teknologi, organisasi, dan kinerja.

Secara umum, Memori digolongkan:

Di dalam CPU (bagian nativeCPU)

- Internal atau Main memory
 - Cache
 - RAM

- External memory
 - Media penyimpanan lainnya (Hard Disk, CD, DVD, Magnetic Tape, dll)

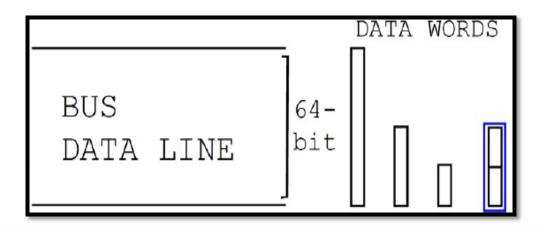

Memori Internal dan External

- Memori internal adalah memori yang diakses langsung oleh prosesor
 - register yang terdapat di dalam prosesor, cache
- Memori utama berada di luar prosesor,
 namun masih di dalam komponen komputer
- Memori eksternal adalah memori yang diakses prosesor melalui piranti I/O
 - Disket, flashdisk, memory card, hardisk, dll.

Sel Memori

- Tiap sel memori hanya merepresentasikan bilangan biner 1 atau 0.
- Sel memori mempunyai kemampuan untuk ditulisi (paling tidak satu kali).
- Sel memori mempunyai kemampuan untuk dibaca.

Terminal Fungsi Sel Memori


Satuan Penyimpanan Data

- Data disimpan dalam bentuk bit-bit bilangan biner (1 bit = 1 digit biner)
- Satu bagian penampung data di memory disebut word
- Satu word berapa bit? Tergantung masingmasing memori

RAM	Address	Data	
	00000000	1010010101001011	
	00000001	0110101001010101	
	00000010	1111011101010101	

= Satuan Transfer?

- Karena data di memori ditransfer lewat bus, ukuran Word memory tidak akan lebih besar dari lebar busnya (data line).
- Tapi ukuran Word boleh lebih kecil dari lebar bus.
 Biasanya dalam bentuk divisi genap dari lebar busnya.
- Sekelompok word disebut dengan block.

Karakteristik Sistem Memori

Karakteristik	Macam/ Keterangan	
Lokasi	CPU Internal (main) External (secondary)	
Kapasitas	Ukuran word Jumlah word	
Satuan transfer	1. Word 2. Block	
Metode akses	Sequential access Direct access Random access Associative access	
Kinerja	Access time Cycle time Transfer rate	
Tipe fisik	Semikonduktor Magnetik	
Karakteristik fisik	Volatile/nonvolatile Erasable/nonerasable	

Lokasi Memori

- Register (di CPU)
 - Berada di dalam chip prosesor
 - Diakses langsung oleh prosesor dalam menjalankan operasinya.
 - Register digunakan sebagai memori sementara dalam perhitungan maupun pengolahan data dalam prosesor

Lokasi Memori

- Memori internal
 - Berada diluar chip prosesor
 - Mengaksesannya langsung oleh prosesor.
 - Dibedakan menjadi memori utama dan cache memori
- Memori eksternal
 - Diakses oleh prosesor melalui piranti I/O
 - Dapat berupa disk maupun pita.

Kapasitas Memori

- Kapasitas memori internal maupun eksternal biasanya dinyatakan dalam mentuk byte (1 byte = 8 bit) atau word.
- Panjang word umumnya 8, 16, 32 bit.
- Memori eksternal biasanya lebih besar kapasitasnya daripada memori internal, hal ini disebabkan karena teknologi dan sifat penggunaannya yang berbeda

Satuan Transfer

- Memori internal
 - Satuan transfer sama dengan jumlah saluran data yang masuk ke dan keluar dari modul memori.
 - Jumlah saluran ini sering kali sama dengan panjang word, namun bisa juga tidak sama

Konsep Satuan Transfer

- Word, merupakan satuan "alami" organisasi memori. Ukuran word biasanya sama dengan jumlah bit yang digunakan untuk representasi bilangan dan panjang instruksi.
- Addressable units, pada sejumlah sistem, adressable units adalah word. Umumnya, hubungan antara panjang A suatu alamat dan jumlah N adressable unit adalah 2A =N.
- Unit of transfer, adalah jumlah bit yang dibaca atau dituliskan ke memori dalam suatu waktu. Pada memori eksternal, transfer data biasanya lebih besar dari suatu word, yang disebut dengan block.

Metode Akses(1)

- Sequential access
 - Memori diorganisasi menjadi unit—unit data yang disebut record.
 - Akses harus dibuat dalam bentuk urutan linier yang spesifik.
 - Informasi pengalamatan yang disimpan dipakai untuk memisahkan record—record dan untuk membantu proses pencarian.
 - Terdapat mekanisme read/write untuk penulisan/pembacaan memorinya.
 - Contoh: Tape (pita magnetik)

Metode Akses(2)

- Direct access
 - Sama seperti sequential access, direct access juga memiliki mekanisme read/write.
 - Setiap blok dan record memiliki alamat unik berdasarkan lokasi fisiknya.
 - Akses dilakukan langsung pada alamat memori.
 - Contoh: Disk

Metode Akses(3)

- Random access
 - Setiap lokasi memori dipilih secara random dan diakses serta dialamati secara langsung.
 - Contoh: RAM

Metode Akses(4)

- Associative access
 - Jenis random akses yang memungkinkan pembandingan lokasi bit yang diinginkan untuk pencocokan.
 - Data dicari berdasarkan isinya bukan alamatnya dalam memori.
 - Contoh: Cache memori

Tentang Cache Memori

- Cache adalah nama suatu Memory yang jauh lebih cepat daripada RAM biasa.
- Berfungsi menyimpan data-data yang sering digunakan/dibaca, sehingga saat komputer membutuhkan data-data tersebut tidak perlu mencari di RAM tapi langsung diambil dari Cache.
- Misalnya komputer kalau mengambil data dari RAM itu membutuhkan waktu 10 ms, apabila data yang sama itu ingin diambil/digunakan lagi cukup ambil dari Cache RAM yang bisa di akses dalam waktu 1ms. 21

Tentang Cache Memori

- Cache adalah nama fungsi saja, sedangkan nama komponennya biasanya dalam bentuk SRAM (Static Random Access Memory).
- Sedangkan untuk fungsi "RAM biasa" yang disebutkan diatas, nama komponen nya biasa dikenal juga sebagai DRAM (Dynamic Random Access Memory).

Parameter Kinerja (1)

- Access time (waktu akses)
 - Bagi random access memory, waktu akses adalah waktu yang dibutuhkan untuk melakukan operasi baca atau tulis.
 - Memori non-random akses merupakan waktu yang dibutuhkan dalam melakukan mekanisme baca atau tulis pada lokasi tertentu dalam hal penyimpanan dan transfer data.
- Memory cycle time (waktu siklus)
 Konsep ini digunakan pada random access memory

Parameter Kinerja (2)

• *Transfer rate* (kecepatan transfer)

Kecepatan data transfer ke unit memori atau dari unit memori.

- Random access memory sama dengan 1/(cycle time).
- Non-random access memory dengan perumusan:

$$TN = TA + (N/R)$$

TN = waktu rata – rata untuk membaca atau menulis N bit

TA = waktu akses rata – rata

N = jumlah bit

R = kecepatan transfer dalam bit per detik (bps)

Tipe Fisik

- **Semiconductor,** contoh: RAM, Cache
- Magnetic inductive layers, contoh: Disk & Tape
- Optically engraved layers, contoh: CD & DVD
 - Terkait dengan:
 - Seberapa besar kemungkinan rusaknya data
 - Mudah dipindahkan atau tidak
 - Bisa dihapus atau tidak (erasable)
 - Membutuhkan daya atau tidak untuk menyimpan data

Karakteristik Fisik

Media penyimpanan volatile dan non-volatile

- Volatile memory, informasi akan hilang apabila daya listriknya dimatikan.
- Non-volatile memory tidak hilang walau daya listriknya mati.
- Memori permukaan magnetik adalah contoh non-volatile memory, sedangkan semikonduktor ada yang volatile dan non-volatile.

Media erasable dan non-erasable.

 Adalah jenis memori semikonduktor yang tidak bisa dihapus kecuali dengan menghancurkan unit storage-nya, memori ini dikenal dengan ROM (Read Only Memory).

Tabel Spesifikasi Memori

Tipe memori	Teknologi	Ukuran	Waktu akses
Cache Memory	semikonduktor RAM	128 – 512 KB	10 ns
Memori Utama	semikonduktor RAM	4 – 128 MB	50 ns
Disk magnetik	Hard Disk	Gigabyte	10 ms, 10MB/det
Disk Optik	CD-ROM	Gigabyte	300ms, 600KB/det
Pita magnetik	Tape	100 MB	Det -mnt, 10MB/mnt

Satuan Memori

- Satuan pokok memori adalah digit biner, yang disebut bit.
- Bit dapat berisi sebuah angka 0 atau 1.
- Memori juga dinyatakan dalam byte.
 - -1 byte = 8 bit
 - Kumpulan byte dinyatakan dalam word.
 - Panjang word yang umum adalah 8, 16, dan 32
 bit.

Tabel Tingkatan Satuan Memori

Symbol		Number of bytes	
Kilobytes	Kb	2e10	1024
Megabyte	МЪ	2e20	1,048,576
Gigabyte	Gb	2e30	1,073,741,824
Terabyte	Τb	2e40	1,099,511,627,776

Diatas Terabyte??

- Petabyte = 1,048,576 gigabytes
- Exabyte = 1,073,741,824 gigabytes
- Zettabyte = 1,099,511,627,776 gigabytes

Memori Semikonduktor

- Semikonduktor merupakan elemen dasar dari komponen elektronika seperti dioda, transistor dan sebuah IC (integrated circuit).
- Disebut semi atau setengah konduktor, karena bahan ini memang bukan konduktor murni.
- Bahan-bahan logam seperti tembaga, besi, timah disebut sebagai konduktor yang baik sebab logam memiliki susunan atom yang sedemikian rupa, sehingga elektronnya dapat bergerak bebas.
- Tipe—tipe memori semikonduktor: RAM, ROM, PROM, EPROM, EEPROM, Flash Memory

RAM

- Random Access Memory
- Merupakan memory Baca Tulis dimana isi dari RAM dapat diupdate setiap saat
- Biasa dijuluki sebagai "working storage"
- Bersifat volatile, saat komputer dimatikan maka isi dari RAM tersebut akan hilang
- Digunakan untuk menyimpan data/instruksi selama pemrosesan berlangsung (bersifat sementara)

Dynamic RAM

- Memerlukan daya operasional yang relatif kecil
- Kerapatan perkeping IC besar
- Memerlukan rangkaian Refresh
- Harga lebih murah dari Static RAM
- Effisien untuk sistem sistem besar
- Kecepatan proses yang relatif lambat dibanding RAM Static

Static RAM

- Memiliki fungsi cache
- Memerlukan daya operasional yang relatif besar
- Tidak memerlukan rangkaian Refresh, karena sifat dari transistor.
- Kerapatan perkeping IC yang sedikit (kecil)
- Harga lebih mahal dari Dynamic RAM
- Kecepatan proses yang tinggi
- Effisien untuk sistem sistem kecil dan sistem yang memerlukan kecepatan pemrosesan yang tinggi.

ROM

- Read Only Memory
- Ada yang isinya ditulis dari pabrik, ada juga yang bisa ditulis oleh user
- ROM yang ditulis oleh pabriknya merupakan "Storage Memory" yang berisi data/program, dimana komputer/user hanya bisa membaca saja, tidak bisa menulisi maupun menghapus.
- Data Permanen, tidak bisa diubah, biasanya ini berisi data-data konfigurasi awal yang diperlukan saat menyalakan komputer

PROM

- Programmable ROM
- Awalnya kosong dan bisa ditulisi, namun setelah diisi data ia berubah menjadi ROM
- Non-volatile
- Program yang tersimpan di dalamnya bersifat permanen
- Biasanya digunakan untuk menyimpan program bahasa mesin yang sudah menjadi bagian hardware (perangkat keras) komputer
- Pengisian program ke dalam PROM menggunakan alat khusus bernama PROM burner

EPROM

- EPROM: erasable programmable read only memory
- Merupakan jenis chip memori yang dapat ditulisi program secara elektris.
- Sama seperti PROM, namun jika diperlukan dapat dihapus ulang.
- Cara menghapusnya adalah menggunakan UltraViolet. Cukup sinari lubang chip nya dengan sinar UV yang kuat selama 10 menit, maka isi dari PROM tadi akan hilang.
- Kesamaannya dengan PROM:
 - keduanya merupakan jenis programmable ROM,
 - termasuk memori non-volatile, tidak membutuhkan daya listrik untuk mempertahankan atau menjaga informasi atau program yang tersimpan di dalamnya.
 - data yang tersimpan di dalamnya tidak hilang walaupun komputer dimatikan.

EEPROM

- EEPROM: electrically erasable programmable read only memory
- Mirip dengan EPROM, namun menghapusnya cukup menggunakan software penghapus. Jadi pemakaiannya mirip dengan CD-RW, dimana apabila diperlukan, isi dari PROM nya bisa di-format dan ditulis ulang
- Non-volatile
- Kapasitas datanya sangat terbatas
- Pada sistem hardware komputer, chip EEPROM umumnya digunakan untuk menyimpan data konfigurasi BIOS dan pengaturan (setting) sistem yang berhubungan dengannya
- EEPROM menggabungkan kelebihan non-volatile dengan fleksibilitas dapat di-update

Flash Memory

- Flash Memory (memori flash) adalah sejenis
 programmable read-only memory yang bisa dihapus
 secara elektrik. Juga bersifat non-volatile.
- Memori sejenis EEPROM yang memberikan banyak lokasi memori untuk dihapus atau ditulisi dalam suatu operasi pemrograman.
- Memori jenis ini banyak digunakan dalam kartu memori, drive flash USB, kamera digital, pemutar MP3, hingga telepon genggam.